1. **Question:** Let X be a topological vector space. $A \subset X$ is said to be totally bounded, if for any neighborhood \cup of 0, there exists a finite set $F \subset A$ such that $A \subset (F + \cup)$. Show that any totally bounded set is bounded and any compact set is bounded.

Solution: Let A be a totally bounded set in a topological vector space X and U be an arbitrary open set containing 0. Choose a balanced nbhd W of 0 such that $W \subset U$. Since A is totally bounded there exists a finite set $F = \{x_1, x_2, ..., x_n\}$ such that $A \subset F + W$. Choose a large s > 0 such that $x_i \in (s-1)W$ $\forall i = 1, 2, ..., n$.

i.e $F \subset (s-1)W$, which implies that $A \subset sW$. For t > s, we have $A \subset tW \subset tU$. Hence A is bounded.

2. Question:

Consider C[0,1]. Show that there is a locally convex topological vector space topology on C[0,1] that is different from the norm topology. Give all the details of your answer.

Solution: Define $||f||_2 = \int_{[0,1]} |f(x)|^2 dx$, then this defines a norm on C[0,1]. C[0,1] is not complete with respect to this norm.

3. Question:

Consider $l^2 = \{\{\alpha_n\}_{n\geq 1} : \Sigma \mid \alpha_n \mid^2 < \infty\}$. Let $U \subset l^2$ be a proper neighborhood of 0. Show that there exists a sequence $x = \{\alpha_n\}_{n<1} \in U$ with infinitely many non-zero coordinates.

Solution: Let $U \subset l^2$ be a proper nbhd of 0. Then there exists a $\varepsilon > 0$ such that $B(0,\varepsilon) = \{x \in l^2 : \|x\| < \varepsilon\} \subset U$. Consider $y = (\sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2^2}}, ..., \sqrt{\frac{1}{2^n}}, ...), \|y\|^2 = \sum_{n=1}^{\infty} \frac{1}{2^n} = 1$ i.e $y \in l^2$ with $\|y\| = 1$. It follows that $\frac{\varepsilon}{2}y \in B(0,\varepsilon) \subset U$ and $\frac{\varepsilon}{2}y$ has infinitely many non-zero coordinates. \square

4. Question:

Let $c_0 = \{\{\alpha_n\}_{n \leq 1} : \lim \alpha_n = 0\}$. Let d be an invariant matric on c_0 making it a topological vector space. Let d' denote the supremum metric on c_0 . Suppose that topologies generated by d and d' are the same Show that d is a complete metric.

Solution: Let \mathbb{B} and \mathbb{B}' be the local bases for the topologies generated by the metrics d and d' respectively. We will show that every d-cauchy sequence is also a d'-cauchy sequence. Let $V' \in \mathbb{B}'$, then there exists a $U \in \mathbb{B}$ such that $U \subset V'$. Since x_n d-cauchy sequence there exists a N such that $x_n - x_m \in U$ for all n, m > N. It follows that x_n is d'-cauchy. This implies that d is a complete metric since d' is.

5. Question:

Let $l^1 = \{\{\alpha_n\}_{n \leq 1} : \Sigma \mid \alpha_n \mid < \infty\}$ with the usual norm. Show that this space is separable when equipped with the weak topology.

Solution: $x_n \to^w x \Leftrightarrow x_n \to x$ in $l^1(Schur's lemma)$. Since $(l^1, |||_1)$ is separable and dense subsets of norm and weak topology are the same, it follows that l^1 is separable in weak topology. \Box

6. Question:

Consider $L^1[0,1]$. Let X be the set of all polynomials in $L^1[0,1]$, with the usual norm. Give an example if a weak*- bounded set in X* that is not bounded. Give complete details of your answer.

Solution: Consider the linear functionals $T_n: X \mapsto \mathbb{C}$ defined by $T_n(p) = \alpha_0 + \alpha_1 + ... + \alpha_{n-1}$. The set $\{T_n: n \geq 1\}$ is weak* bounded but not norm bounded.

7. **Question:** Let X be a topological vector space with a, balanced and bounded neighborhood of 0. Show that X is metrizable (you may assume that metrization theorem).

Solution: Let V be a balanced nbhd of 0. Then $\{\frac{1}{n}V : n \in \mathbb{N}\}$ forms a countable local base for X. Hence X is metrizable by metrization theorem.

8. Question:

On the space $C_b(\mathbb{R})$ of bounded continuous functions, consider the sequence of semi-norms, $p_n(f) = \sup_{[-n,n]} |f|$. Describe convergent sequences and bounded sets in the topology generated by this family $[p_n]_{n \leq 1}$.

Solution:

$$f_k \to f \Leftrightarrow \forall n \in \mathbb{N} \ p_n(f_k - f) \to 0 \ as \ k \longrightarrow \infty$$

$$\Leftrightarrow \sup_{x \in [n, -n]} |f_k(x) - f(x)| \to 0$$

$$\Leftrightarrow f_k \to f \ uniformly \ on \ [n, -n], \ for \ every \ n$$

$$\Leftrightarrow f_k \to f \ uniformly \ on \ every \ compact \ set \ K$$

 $f_k \to f$ in $C_b(\mathbb{R}) \Leftrightarrow f_K \to f$ uniformly on every compact subset K of \mathbb{R} . Similarly a set is bounded in $C_b(\mathbb{R})$ iff it is uniformly bounded on every compact subset of \mathbb{R} .